Every zero-dimensional space is cell soluble
نویسندگان
چکیده
منابع مشابه
Every Banach Space is Reflexive
The title above is wrong, because the strong dual of a Banach space is too strong to assert that the natural correspondence between a space and its bidual is an isomorphism. This, from a categorical point of view, is indeed the right duality concept because it yields a self adjoint dualisation functor. However, for many applications the non–reflexiveness problem can be solved by replacing the n...
متن کاملEvery n-dimensional normed space is the space Rn endowed with a normal norm
A norm ‖ · ‖ on R is said to be absolute if ‖(x, y)‖ = ‖(|x|, |y|)‖ for all (x, y) ∈R, and normalized if ‖(, )‖ = ‖(, )‖ = . The set of all absolute normalized norms onR is denoted by AN. Bonsall and Duncan [] showed the following characterization of absolute normalized norms on R. Namely, the set AN of all absolute normalized norms on R is in a one-to-one correspondence with the s...
متن کاملEvery crowded pseudocompact ccc space is resolvable
We prove that every pseudocompact crowed ccc space is c-resolvable. This gives a partial answer to problems posed by Comfort and Garćıa-Ferriera, and Juhász, Soukup and Szentmiklóssy.
متن کاملWhen every $P$-flat ideal is flat
In this paper, we study the class of rings in which every $P$-flat ideal is flat and which will be called $PFF$-rings. In particular, Von Neumann regular rings, hereditary rings, semi-hereditary ring, PID and arithmetical rings are examples of $PFF$-rings. In the context domain, this notion coincide with Pr"{u}fer domain. We provide necessary and sufficient conditions for...
متن کاملZero-dimensional proximities and zero-dimensional compactifications
Article history: Received 4 August 2008 Received in revised form 12 December 2008 Accepted 13 December 2008 MSC: 54E05 54D35 54G05
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1990
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1990-1021906-2